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Abstract

In the supplemental material, we first provide more details on the novel Wild-MuPPET dataset
in Sec. 1, then provide more details on the dynamic matching algorithm. Next, we report detailed
results on our network training and ablation studies in Sec. 3. Also, we briefly explain the metrics
used in our main paper in Sec. 4. Finally, in Sec. 5 we report pose estimation results on the odor
trail tracking dataset from Mathis et al. (2018) while in Sec. 6 we report results on the cowbird data
from Badger et al. (2020).

1 Wild-MuPPET Dataset

Here, we provide more description on the novel

Wild-MuPPET dataset.

Experimental setup. The dataset is col-

lected in a private pigeon breeder in Singen,

Germany, where pigeons are released everyday to
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freely fly around the area. Similar to 3D-POP

(Naik et al., 2023), we use 4 sony action cameras

(rx0-ii, 30Hz, 3840× 2160 px) cameras connected

to a camera control box (CCB-WD1) to allow for

synchronization. The cameras are mounted on 4

tripods to create a rectangular formation. Data

was then collected opportunistically when pigeons

land on the ground to return to their loft.

Calibration Procedure. For intrinsic cali-

bration, we use a standard Charuco checkerboard.

For extrinsics calibration, we used a Vicon IR

active wand, which is a calibration wand made

for a Vicon motion capture system, containing 5

unique RGB red light in a fixed position. To deter-

mine the exact 3D object coordinate of each of

the 5 lights, we use SMART-BARN (Nagy et al.,

2023), a large scaled motion capture facility, where

the exact coordinates of the wand are measured.

During calibration in Wild-MuPPET, we present

the wand to all 4 cameras for a short calibration

sequence, and the 5 unique points are detected

each frame using a simple blob detection algo-

rithm. All detections are finally combined with the

3D object definition for extrinsic calibration of the

all 4 cameras.

Dataset Description. The Wild-MuPPET

dataset contains a total of 2000 frames of manual

2D annotations of 9 keypoints, identical to 3D-

POP (beak, nose, left/right eye, left/right shoul-

der, top/bottom keel, tail). These 2D detections

are then triangulated into 3D using triangulation

with bundle adjustment, to obtain 500 frames of

3D ground truth. All annotations contain a single

pigeon individual.

For additional qualitative evaluation, we also

provide 3600 frames of continuous sequence with

a single pigeon (same sequence where annotated

set was sampled from) in the tracking area and

900 frames of continuous sequence with 3 pigeons

in the tracking area.

2 Details on the Dynamic

Matching Algorithm

The dynamic matching algorithm based on Huang

et al. (2020) first generates 3D pose estimates for

each possible pair of 2D poses, creating a large

3D pose subspace. This 3D pose subspace con-

tains only a small amount of correct 3D poses. We

then pick the correct poses in the 3D subspace by

assuming that the correct 3D poses are calculated

from 2D poses belonging to the same individual.

Thus, if the Euclidean distance between a pair

of 3D poses from the 3D subspace is sufficiently

small, we consider the 2D poses that belong to

these two 3D poses a match (Huang et al., 2020).

We match until the pairwise distance threshold

of 200mm is reached. Since the algorithm does

not know the number of individuals in the scene,

we choose a conservative threshold of 200mm to

ensure all individuals are matched. Note that the

algorithm prioritizes matches with lower distance,
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hence a larger threshold doesn’t lead to worse per-

formance while a lower threshold could lead to

individuals that are not matched. For more details

we refer to Huang et al. (2020).

3 Results on Network

Training and Ablation

Studies

In this section of our supplemental material, we

give more detailed results on experiments on

network training and ablation studies.

3.1 Data Augmentation for Pigeons

For data augmentation for the KeypointR-

CNN (He, Gkioxari, Dollar, & Girshick, 2017) we

find that changing brightness, flipping or scal-

ing do not enhance performance, but changing

sharpness with a probability of 0.2 results in the

best performance in terms of RMSE (for numbers

cf. Tabs. 1 and 2). This is intuitive since we train

on the single pigeon data where the training data

already contains a wide range of different pigeon

positions and lighting conditions and thus covers

most of the scaling and brightness. Also, the train-

ing data already include most body orientations

(with respect to the camera), thus flipping does

not improve test accuracy. Since the depth of field

of the cameras is limited the pigeons are some-

times slightly out of focus and therefore blurring

the input image with a small probability of 0.2

improves the accuracy of the test set.

In the case of multi-pigeon video sequences,

however, we find that the best data augmenta-

tion parameters are not the same as for the single

pigeon data. We keep the parameters from the

single pigeon analysis but find that randomly jit-

tering brightness by a factor chosen uniformly

from [0.4, 1.6] and a flipping probability of 0.5 pro-

duces the best outcome. This is intuitive because

the single pigeon data does not cover the range of

brightness found in the multi-pigeon data and the

flipping makes the pose estimation in new situa-

tions more robust. A small scaling range of ±5%

is sufficient since the single pigeon data covers

already a large range of pigeon sizes. Also, if the

scaling range is too large, we find multiple (mis-

)detections if pigeons are nearby. This is also the

case in situations where the pigeons occlude or are

close to each other even if we do not apply scaling.

3.2 Training Hyperparameters

In Tab. 3 you find detailed results on experiments

for hyperparameter tuning for the KeypointR-

CNN (He et al., 2017). A step size of 50 and a

multiplicative factor of learning rate decay γ = 0.5

yield the best result (cf. Tab. 3).
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Table 1 Ablation Study. Data
augmentation ablation study (single
pigeon data) for the parameters
brightness (b) and sharpness probability
(sp). Framework trained on whole session
four (s4) with batch size 20, learning rate
0.005, step size 10, gamma 0.5, number of
epochs 100, no flipping and no scaling.
Results are given as RMSE [px] for
predictions where confidence score
exceeds 0.999. s1, s2 and s3 denote the
different recording sessions. *: No change
in brightness.

config s1 s2 s3

b = [1, 1]∗, sp = 0 25.1 6.4 9.7
b = [0.7, 1.3], sp = 0.1 14.3 4.4 6.9
b = [0.4, 1.6], sp = 0.1 12.7 4.5 6.6
b = [0.7, 1.3], sp = 0.2 13.0 4.6 6.8
b = [0.4, 1.6], sp = 0.2 13.3 4.6 6.9
b = [0.4, 1.6], sp = 0 13.5 4.7 7.1
b= [1,1]∗, sp= 0.2 17.0 3.9 6.7

Table 2 Ablation Study. Data
augmentation ablation study (single
pigeon data) for the parameters flip
probability (fp) and scale range (sr).
Framework trained on whole session four
(s4) with batch size 40, learning rate
0.005, step size 77, gamma 0.7, number of
epochs 500, brightness 0.6 and sharpness
probability 0.2. Results are given as
RMSE [px] for predictions where
confidence score exceeds 0.999. s1, s2 and
s3 denote the different recording sessions.
No significant improvement within
sessions.

config s1 s2 s3

fp = 0, sr = [50, 200] 14.3 4.7 7.5
fp = 0.5, sr = [75, 150] 12.3 4.6 7.0
fp = 0.5, sr = [90, 110] 11.9 4.6 7.0
fp = 0.5, sr = [78, 125] 11.8 4.7 6.8

4 Metrics

In this section of our supplemental material, we

briefly explain the metrics used in our main paper.

4.1 Pose Estimation

The RMSE is the L2 distance between the pre-

dicted and ground truth positions of keypoints.

Table 3 Ablation Study.
Hyperparameter ablation
study related to training for
the parameters step size (sz)
and γ. Framework trained on
entire session four (s4) of the
single pigeon data with batch
size 20, learning rate 0.005,
number of epochs 250, no
change in brightness, sharpness
probability 0.2, no flipping and
no scaling. Results evaluated
on 200 randomly sampled
frames from session two (s2)
for predictions where
confidence score exceeds 0.999.

config RMSE [px]

sz = 10, γ = 0.5 5.5
sz = 25, γ = 0.5 4.6
sz= 50, γ = 0.5 3.8
sz = 75, γ = 0.5 4.3
sz = 25, γ = 0.7 4.5
sz = 50, γ = 0.7 4.3
sz = 75, γ = 0.7 4.4
sz = 25, γ = 0.95 4.6
sz = 50, γ = 0.95 4.7
sz = 75, γ = 0.95 4.4

We average over samples and keypoints like

Mathis et al. (2018).

The PCK is the percentage of predicted key-

points that fall within a normalized distance of

the ground truth. This normalized distance in

3D Bird Reconstruction (Badger et al., 2020) is

a fraction (0.05 and 0.1) of the largest dimen-

sion of the ground truth bounding box containing

the bird and so do we use this, too, in our com-

parison on the cowbird data. For our comparison

on the pigeon data instead, the normalized dis-

tance is again a fraction (0.05 and 0.1) of the

largest dimension of the ground truth bounding

box for the 2D evaluation and the maximum dis-

tance between any two ground truth keypoints for

each individual in 3D.
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4.2 Tracking

The CLEAR-MOT metrics are the Multi Object

Tracking Accuracy (MOTA) and the Multi Object

Tracking Precision (MOTP). MOTP is the total

error in estimated position for matched object-

hypothesis pairs over all frames, averaged by

the total number of matches made (Bernardin

& Stiefelhagen, 2008). MOTA summarizes three

sources of errors with a single performance mea-

sure, i.e. the ratio of misses in the sequence,

computed over the total number of objects present

in all frames, the ratio of false positives and the

ratio of mismatches (Bernardin & Stiefelhagen,

2008; Dendorfer et al., 2021). The track quality

measures are classified as Recall, Precision, false

positives per frame (FPF) mostly tracked (MT),

partially tracked (PT) mostly lost (ML), frag-

ments (Frag) and ID switches (IDS). Recall and

Precision are the frame-based correctly matched

objects divided by total ground truth objects and

total output objects respectively (Li, Huang, &

Nevatia, 2009). MT and ML are the percentage

of ground truth trajectories which are covered by

tracker output for more than 80% and less than

20% in length (Li et al., 2009). Frag is the num-

ber of fragmentations where a track is interrupted

by miss detection (Bewley, Ge, Ott, Ramos, &

Upcroft, 2016). The trajectory-based metric IDF1

is the ratio of correctly identified detections over

the average number of ground-truth and com-

puted detections (Ristani, Solera, Zou, Cucchiara,

& Tomasi, 2016).

5 2D Mouse Pose Estimation

5.1 Odor Trail Tracking Data

This 2D data from Mathis et al. (2018) con-

tains single mice following an odor and contains

1080 manually annotated samples. The samples

are random, distinct frames from multiple ses-

sions observing seven different mice (Mathis et al.,

2018) and the resolution of the images is 640×480

or 800× 800 since the data was recorded with two

different monochromatic cameras. On average the

mice cover an area of 256×256 pixels of the frame.

For more details on this dataset we refer

to Mathis et al. (2018).

5.2 Comparison on the Odor Trail

Tracking Data (Mouse)

In the original DLC article (Mathis et al., 2018)

the authors evaluate and report numbers in terms

of RMSE on their odor trail tracking data where

they estimate the pose (snout, left and right ear

and tail base) of single mice. We thus report only

RMSE in this section for the purpose of compari-

son. In the DLC article, the networks are trained

for a total of 650K iterations with batch size 1 for

three splits of 0.8/0.2 (training/test) and evalu-

ated every 50K iterations. The authors also report
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Table 4 Comparison on the Odor Trail
Tracking Data (Mouse). RMSE on the odor
trail tracking test set from Mathis et al.
(2018). Values for DLC from Mathis et al.
(2018). Values of KP-RCNN is from our
analysis, coloured in grey. We report
precision within ±0.2 because we read values
from Fig. 2c in Mathis et al. (2018).

Model, iterations RMSE [px]

KP-RCNN, 200K iterations 4.2
DLC, 200K iterations 3.6± 0.2
DLC, 350K/600K iterations 3.2± 0.2

the average of the three splits. For more details

see Mathis et al. (2018).

In order to compare the KeypointRCNN to

DeepLabCut (which is our other choice for the

pose estimation module of our framework) on the

mouse data, we train their odor trail tracking data

set with the KeypointRCNN. We train the Key-

pointRCNN on the DeepLabCut data with the

configuration that we report in the main paper.

We train for 250 epochs with a batch size of 20

instead of 1 to exploit our hardware and fine-tune

twice for another 250 epochs with training con-

figurations that lower the learning rate further to

compare our results to those of DeepLabCut after

200K, 400K and 600K iterations.

Tab. 4 compares results for DeepLabCut

from Mathis et al. (2018) with the KeypointR-

CNN. We obtain the results for DeepLabCut from

Fig. 2c in Mathis et al. (2018). These results were

achieved with a network based on ResNet-50. We

report their values for 200K iterations and their

absolute lowest RMSE on the test set averaged

over the three 0.8/0.2 splits. For the KeypointR-

CNN we report numbers with the same precision

as we are able to read for DeepLabCut. We report

numbers only for 200K iterations because the Key-

pointRCNN does not improve the accuracy of pose

estimation in the test set when trained for more

iterations.

Overall, this comparison shows the same trend

as the 2D pigeon results in our main paper. Please

note that DLC in Mathis et al. (2018) in con-

trast to the KeypointRCNN is optimized on the

odor trail tracking data. Thus we conclude that

the KeypointRCNN is comparable with DeepLab-

Cut in terms of RMSE on the mouse data meaning

that the KeypointRCNN also achieves a RMSE of

about 4 px on the odor trail tracking test set.

6 2D Cowbird Pose

Estimation

6.1 Cowbird Data

This 2D data from Badger et al. (2020) con-

tains single cowbirds. Their original images have

a maximum resolution of 1920 × 1200 contain-

ing multiple birds. For 2D pose estimation they

use 1000 cropped samples of single individuals

from a subset of 18 moments across 6 of the 10

days (Badger et al., 2020) with a resolution of

256× 256.
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Table 5 Ablation Study. Data augmentation ablation study (cowbird data from Badger et al. (2020)) for the parameters
brightness (b), sharpness probability (sp), contrast (c), saturation (s) and hue (h). Framework trained on their training
split with batch size 20, learning rate 0.005, step size 9, gamma 0.5, number of epochs 45, no flipping and no scaling.
Results are given as PCK and evaluated on their test split. *: No change in brightness.

config @0.05 @0.1

b = [1, 1]∗, sp = 0, c = 0, s = 0, h = 0 0.37 0.55
b = [1, 1]∗, sp = 0.1, c = 0, s = 0, h = 0 0.35 0.54
b = [1, 1]∗, sp = 0.2, c = 0, s = 0, h = 0 0.38 0.55
b= [0.7,1.3], sp= 0.1, c= 0, s= 0, h= 0 0.39 0.56
b = [0.4, 1.6], sp = 0.2, c = 0, s = 0, h = 0 0.36 0.52
b = [0.7, 1.3], sp = 0, c = 0, s = 0, h = 0 0.37 0.56
b = [0.4, 1.6], sp = 0, c = 0, s = 0, h = 0 0.37 0.55
b = [0.7, 1.3], sp = 0.1, c = 0.2, s = 0, h = 0 0.38 0.55
b = [0.7, 1.3], sp = 0.1, c = 0.4, s = 0, h = 0 0.37 0.53
b = [0.7, 1.3], sp = 0.1, c = 0.6, s = 0, h = 0 0.37 0.55
b = [0.7, 1.3], sp = 0.1, c = 0.8, s = 0, h = 0 0.38 0.55
b = [0.7, 1.3], sp = 0.1, c = 0, s = 0.2, h = 0 0.38 0.54
b = [0.7, 1.3], sp = 0.1, c = 0, s = 0.4, h = 0 0.37 0.55
b = [0.7, 1.3], sp = 0.1, c = 0, s = 0.6, h = 0 0.38 0.54
b = [0.7, 1.3], sp = 0.1, c = 0, s = 0.8, h = 0 0.37 0.56
b = [0.7, 1.3], sp = 0.1, c = 0, s = 0, h = 0.1 0.38 0.55
b = [0.7, 1.3], sp = 0.1, c = 0, s = 0, h = 0.2 0.38 0.56
b = [0.7, 1.3], sp = 0.1, c = 0, s = 0, h = 0.3 0.37 0.56
b = [0.7, 1.3], sp = 0.1, c = 0, s = 0, h = 0.4 0.37 0.53
b = [0.7, 1.3], sp = 0.1, c = 0.2, s = 0.8, h = 0.2 0.38 0.55
b = [0.7, 1.3], sp = 0.1, c = 0.8, s = 0.8, h = 0.2 0.37 0.55

For more details on this dataset we refer

to Badger et al. (2020).

6.2 Data Augmentation for

Cowbirds

The cowbird data set is recorded in outdoor

aviaries (Badger et al., 2020). Thus different day-

light and season conditions are present. To con-

sider these different conditions inherent in the

data, we use different data augmentation param-

eters. We find that randomly changing brightness

by a factor chosen uniformly from [0.7, 1.3], and

a sharpness probability of 0.1, works best (for

numbers cf. Tab. 5).

6.3 Comparison on the Cowbird

Data

3D Bird Reconstruction (Badger et al., 2020) is

state of the art for 3D bird shape recovery, and

they also report on the accuracy of 2D bird pose

estimation. The authors evaluate and report num-

bers in terms of PCK (cf. Sec. 4) on their cowbird

data, where they estimate the pose (bill tip, right

and left eyes, neck, nape, right and left wrists,

right and left wing tips, right and left feet and

the tail tip) of single cowbirds. Their network is

trained for 60 epochs (personal e-mail communi-

cation with the authors) with a train/test split

7



Table 6 Comparison on the Cowbird
Data. PCK on the cowbird test set
from Badger et al. (2020). Values for
3DBR from Badger et al. (2020).

Model, epochs @0.05 @0.1

KP-RCNN, 45 epochs 0.39 0.56
KP-RCNN, 60 epochs 0.36 0.54
3DBR, 60 epochs 0.46 0.64

of 0.75/0.25. For more details see Badger et al.

(2020). In order to compare the KeypointRCNN

(one of our choices for the pose estimation module

in our framework) to the modified HRNet (Sun,

Xiao, Liu, & Wang, 2019; Badger et al., 2020)

used in 3D Bird Reconstruction on the cowbird

data, we train their single cowbird data with the

KeypointRCNN. We train the KeypointRCNN on

the cowbird data with the configuration that we

report in our main paper. We train for 60 epochs

with a batch size of 20 to compare our results

to those of 3D Bird Reconstruction. The Key-

pointRCNN achieves the best performance on the

cowbird data after 45 epochs. We thus report the

PCK results derived from KeypointRCNN with 45

and 60 epochs.

Tab. 6 compares results for 3D Bird Recon-

struction from Badger et al. (2020) with the Key-

pointRCNN. While the KeypointRCNN achieves

lower accuracy by 7% (PCK@0.05) and 8%

(PCK@0.1) on the cowbird data set than 3D

Bird reconstruction, the KeypointRCNN con-

verges faster (45 epochs vs. 60 epochs).
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